
Software Engineering

 5 - 1

PROGRAMMING LANGUAGE
ISSUES

l Procedural vs. Nonprocedural

l Goals of Software Engineering

l Language-Specific Issues

m Control Structures

m Data Typing

m Subprograms and Collections

m Structured Programming

m Object-Oriented Programming

m Application Domains

l Compiler-Specific Issues

l Organizational Issues

m Culture and Psychological

View

m Education and Training,

Resources Required, and

Cost

l Language Selection

m Trends by Application

Domain

m Criteria for Selection

m Assessment

Objectives of Module 5

l Present and discuss the idea that languages can be classified as procedural and

non-procedural. Present the four generations of programming languages.

l Review the goals of software engineering and discuss how these goals relate to

the programming language.

l Discuss language-specific and compiler-specific issues. Compare and contrast

language issues and compiler issues.

l Present and discuss organizational issues relating to the selection of a

programming language.

l Present and discuss a method for the selection of a programming language.

Software Engineering

 5 - 2

Software Development
Lifecycle

System
Engineering

Analysis

Design

Coding

Testing

Maintenance

Software Engineering

 5 - 3

Procedural Vs. Nonprocedural
Languages

1960 1970 1980 1990 2000

First Generation

Second Generation

Third Generation

Fourth Generation

l Procedural Language - Capable of
detailing the steps to be taken to achieve
desired results

l Non-Procedural Language - Capable of
detailing the desired results (the
language translator creates the steps)

Non-Procedural

Procedural

l First Generation (Procedural Languages)

m Machine code and assembly languages

m Machine-dependent

l Second Generation (Procedural Languages)

m FORTRAN, COBOL, ALGOL, BASIC

m Broad usage, large software libraries, widest familiarity

m Mature languages and compilers that lack support for current

software technology (data abstractions, information hiding, strong

typing, collections, structured programming, object-oriented

programming)

l Third Generation (Procedural Languages)

m Pascal, Modula-2, C, C++, Ada, LISP, FORTH

m Three classes: general-purpose, object-oriented, and specialized

m Support current software technology

l Fourth Generation (Non-Procedural Languages)

m Hypercard, Oracle Query Language

m Many classes: query, program generators, decision support,

prototyping, formal specification, etc.

m Specific to an application domain

Software Engineering

 5 - 4

Goals of Software Engineering

Efficiency

Reliability

Modifiability

Understandability

Well-Engineered
Software

l The generations of programming languages have evolved in part to support the four

main goals of Software Engineering:

m The development of software that is efficient, able to meet its time and space

constraints

m The development of software that is reliable, able to be trusted to perform its

functions without error under a variety of conditions

m The development of software that is modifiable, because software of any value

is likely to be changed for several reasons:

3 Corrective Maintenance - to correct defects uncovered after its release

3 Adaptive Maintenance - to change it to work in new environments (such

as new operating systems or new target platforms)

3 Enhancement - to add features not considered during its original

development

m The development of software that is understandable, because people in the

development organization often change, and an organization cannot count on

the original developer being around when changes to the software are required

l Two key ingredients are required to meet these goals:

m a programming language which includes features to support these goals and

m a software development process that ensures that the design of the software

and the use of the programming language properly supports these goals

Software Engineering

 5 - 5

Language-Specific Issues

l Control Structures

l Data Typing

l Subprograms and Collections

l Structured Programming

l Object-Oriented Programming

l Application Domains

Software Engineering

 5 - 6

Control Structures

Exit-Condition
Loop

Entry-
Condition
Loop

If-Then-
Else Case

Module

l Most Second and Third Generation Languages Support the Basic Control

Structures:

m Module - a logical collection of related operations

m If-Then-Else - Perform a test and then perform one procedure or

another

m Case - Perform a test and then perform one of a number of procedures

m Entry-Condition Loop - Perform a test; if the test succeeds, perform a

procedure and go back to perform the test again; if the test fails, go on

m Exit-Condition Loop - Perform a procedure; perform a test; if the test

succeeds, go back to perform the procedure again; if the test fails, go

on

l Modules may contain any combination of the basic control structures,

including other modules

Software Engineering

 5 - 7

Control Structures, Continued

Module

If-Then-
Else

l Most Third Generation Languages support all the control structures, but the

syntax may be different. The following are examples of functions (modules in

the diagram above) containing if-then-else statements in C (or C++) and Ada:

C or C++ Function Ada Function

int min(int a, int b) { function min

 int result; (a, b: in integer)

 if (a < b) { return integer is

 result = a; result : integer;

 } else { begin

 result = b; if a < b then

 } result := a;

 return result; else

} result := b;

end if;

return result;

end min;

Software Engineering

 5 - 8

Control Structures, Continued
Exit-Condition
Loop

Entry-
Condition
Loop

l The following code fragments show entry-condition loops in C (or C++) and

Ada:

C or C++ Ada

sum = 0; sum := 0;

i = 0; i := 0;

while (i <= 10) { while i <= 10 loop

 sum += i; sum := sum + i;

 i++; i := i + 1;

} end loop;

Software Engineering

 5 - 9

Data Typing
Character/Byte

Integer

Float

Double Float

Scalar Types

Array

Record

Aggregate Types

l There are two basic kinds of data:

m Scalar - used to represent a single, non-divisible entity, like a

character or an integer

m Aggregate - used to represent a collection of other aggregates and

scalars

l In general, Second and Third Generation Languages support scalars and

array aggregates and Third Generation Languages support record

aggregates.

l Record aggregates are the basis for data abstraction in many

methodologies and object definition in object-oriented methodologies.

l Strong type checking in Third Generation Languages helps to identify

potential problems at compile time. Classically, interface matching has

been a problem with Second Generation Languages, and newer Third

Generation Languages have addressed the problem of ensuring that the

interfaces are correct by putting the burdon of checking these interfaces

on the compiler rather than the coder.

Software Engineering

 5 - 10

Subprograms and Collections

l Subprograms

m Functions - return a specific value, like

the sin of an angle

m Procedures - perform a series of

operations, returning zero or more

values, like reading a line from a file

l Collections

m Package - a group of data, subprograms, and

other software constructs

m Class - a group of data and subprograms

related to a number of similar objects

l A subprogram is a body of code that performs a specific action or set of

actions. Subprograms are supported by Second and Third Generation

Languages.

l Collections are groups of subprograms and data which are related to each

other in some way. In certain languages, a collection may have more than

just subprograms and data associated with it. Collections are supported by

some Third Generation Languages (such as Ada, C++, and Modula-2).

l Subprograms and collections support both structured and object-oriented

programming. In particular, modularity, information hiding, data abstraction,

and object-oriented structuring are directly supported.

Software Engineering

 5 - 11

Structured Programming

l Structured programs are those programs composed of combinations of the

basic control structures. Some Second Generation and all Third Generation

Languages provide control structures to the extent that all programs written in

these languages may be structured.

l Structured programs tend to be more readable, understandable, and

maintainable than unstructured programs.

l The desire for structured programming grew out of situations in which the

application software could meet its time and space constraints, so there was

an opening to consider designing the code with less regard to the time and

space constraints and more regard to other concerns, particularly the life

cycle cost of the software. The cost of the software became more

pronounced in the maintenance phase, so efforts were made to make the

code easier to maintain.

l Two main attributes of the software were shown to impact its maintenance

significantly: the degree of cohesion within a module and the degree of

coupling between modules. It was found desirable to make modules highly

cohesive (so they could be viewed and tested as autonomous units of the

software system) and loosely coupled (so testing of one module did not

require another module to be involved).

Software Engineering

 5 - 12

Object-Oriented Programming
Object A Object B

Object C Object D

Message 1

Message 2

Message 3

Event 1 Event 2

l Object-Oriented Programming arose from a need to manage very

complex software systems -- systems which were so complex that

Structured Programming was inadequate in and of itself. Object-Oriented

Programming is a logical extension of Structured Programming, adding to

the structured programming paradigm the concepts of processing

asynchronous events (such as mouse clicks and interrupts) and performing

concurrent operations (using messages to communicate between the

concurrent processes).

l Object-Oriented Programming allows the program to become a model of

the real-world problem. The objects in the real world are modelled as

objects in the program, and the programmatic object models define the key

attributes and behaviors of the real-world objects.

l Constructs beyond the control structures and data typing described

previously are needed to support object orientation:

m A means to relate objects as members of a class, which is a

common definition which groups objects of related attributes and

behaviors together

m A means to derive new classes from existing classes, inheriting all

the attributes and behaviors or a selected subset of them from the

existing classes in the new classes

m A means to model concurrency, since real-world objects often

operate in parallel with each other

m A means to handle events, since real-world objects often cause or

react to events

Software Engineering

 5 - 13

Application Domains

Application Domain

Development Methodology

Required Language Features

Available Tools

Influences Influence
and Support

Determines

l Development Considerations

m Structured or Object-Oriented?

m Textual or Graphical?

m Individual or Team?

m Code Hacking or Code Engineering?

l Language Features

Available In

Feature C C++ Ada

Control Structures x x x

Data Abstraction x x x

Packages x

Classes x x

Inheritance x

Dynamic Binding x

Concurrency x

Event Detection and Processing x x x

Information Hiding x

Strong Type Checking x x

Software Engineering

 5 - 14

Compiler-Specific Issues

A B C

-- Compiler --

Code
Size

Code
Speed

Compiler
Speed

A B C

-- Compiler --

A B C

-- Compiler --

EFFICIENCY and OPTIMIZATIONS

l The size and speed of the code produced by a given compiler is a feature of

the compiler -- not a feature of the language.

l The speed of the compiler and the tools that come with it to aid the developer

are also features of the compiler rather than the language.

ENVIRONMENT ACCESS

l Access to the environment of the target is often an issue which is dependent

on the compiler rather than the language.

l The environment of the target includes the following:

m The command line, the system variables, and the process parameters

m The required libraries and bindings, such as X Windows and SQL

m The target operating system

m Operating system and applications software with which the software

under development must interface

Software Engineering

 5 - 15

Organizational Issues

l Culture and Psychological View

l Education and Training,

Resources Required, and Cost

Software Engineering

 5 - 16

Culture and Psychological View

l Culture

l Psychological View

l Education & Training

l Resources Required

l Cost

l Culture

The culture of an organization can impact the software development process

significantly. An NIH (Not Invented Here) mind set can inhibit software

reuse, for example. An environment in which the projects are in a mode

of "putting out fires" can inhibit technology development. Culture is one

of the easiest things to observe and one of the hardest to change.

l Psychological View

The psychological view of a programming language focusses on human

concerns such as ease of use, simplicity in learning, improved reliability,

reduced error frequency, ease to maintain, and enhanced user

satisfaction. Simultaneously, an awareness of machine efficiency,

software capacity, and hardware constraints must be maintained.

A number of psychological characteristics are evidenced in the design of a

programming language:

m Uniformity - the degree to which a language uses consistent

notation, applies seemingly arbitrary restrictions, and supports

syntactic or semantic exceptions to the rule

m Ambiguity - how the compiler interprets a statement as opposed

to how a human naturally interprets the same statement

m Compactness - the amount of code-oriented information that

must be recalled from human memory at a time

Software Engineering

 5 - 17

Education and Training,
Resources Required, and Cost

l Culture

l Psychological View

l Education & Training

l Resources Required

l Cost

l Education and Training

Most education and training for the introductory use of a programming language

can usually be accomplished in a few weeks, although it may take a few

years of on-the-job use of a language and supplementary advanced courses

in it before a programmer masters the language. The initial training is just a

starting point, however. The people must apply what they have learned as

quickly as possible afterward the initial training. In addition, access to a

consultant during this initial application period can be quite beneficial.

l Resources Required

Software tools to support the designers and developers, disk space to support

those tools and their data files, CPU speed to allow the tools to run quickly

for the designers and developers, and disk space to provide room for

intermediate files and different versions of the software under development

are all issues to be considered. Huge impacts can be made to productivity if

any of these items are lacking.

Modern Third Generation Languages often require more CPU power to do their

work than previous languages. The compiler is relieving the programmer of

many tasks relating to checking his code for validity before it runs, so the

compiler is much more complex, requiring more CPU power to run in a

reasonable amount of time.

l Cost

The cost of education, training, resources, software development, and software

maintenance can be significantly impacted by the selection of the language.

Cost in this sense refers to both dollars and time.

Software Engineering

 5 - 18

Language Selection

l Trends by Application Domain

l Criteria for Selection

l Assessment

Software Engineering

 5 - 19

Trends by Application Domain

Some Application Domains

l Systems Software

l Real-Time Software

l Embedded Software

l Business Software

l Engineering/Scientific Software

l Personal Computer Software

l Artificial Intelligence Software

Software Development Across Domains

l Structured

l Object-Oriented

l Fourth Generation

l Systems Software - C, C++

l Real-Time Software - Ada, C, Modula-2, FORTH, FORTRAN, assembly

l Embedded Software - Ada, C, assembly

l Business Software - COBOL, 4GLs

l Engineering/Scientific Software - FORTRAN, C, Pascal, Ada

l Personal Computer Software - C, assembly, BASIC, Pascal

l Artificial Intelligence Software - LISP, PROLOG, OPS5

Software Engineering

 5 - 20

Criteria for Selection

Some Criteria --

1. Application domain

2. Algorithmic and computational complexity

3. Environment in which the software will execute

4. Performance considerations

5. Data structure complexity

6. Knowledge of software development staff

7. Availability of a good compiler or cross-compiler

8. Life cycle costs of software development

l The applications domain of a project is a criterion that is applied most often

during language selection.

l The prolifieration of "new and better" programming languages continues at a

significant pace. There are now over 4,500 high-order programming

languages, not counting dialects (such as FORTRAN-66 and FORTRAN-77).

l It is sometimes better to choose a "weaker" (old) programming language:

m Support software (compilers and other tools) is solid and reliable

m Documentation is well-written

m Everyone on the software development team knows the language

m The language has been applied in the past with good results

m There may be a psychological resistance to change

l It is sometimes better to choose a newer programming language:

m The desired methodology is supported only by the newer languages

m The software's environment does not support the older languages

m A newer language may better support the overall goals of software

engineering -- being able to generate efficient, reliable, modifiable, and

understandable code

Software Engineering

 5 - 21

Assessment
Assessing a Programming Language - Develop a Yardstick and a Buy-In

l Determine criteria for selection

l Set weights for each criterion

l Interact with your organization - get a buy-in for

the above

l Select an assessment team from various

representative groups in your organization

l Perform the assessment analytically

l Brief organization on the results of the

assessment and discuss - get a buy-in for the

fairness of the assessment

l Reassess if necessary

l Select language and brief the organization

l This slide shows the recommended steps (in the opinion of the author) for

the selection of a programming language.

l An important feature of this process is the buy-in of the process, the

intermediate results, and the final result by the organization which will be

affected by this assessment.

l Another important feature of this process is the detached method of

assessing by using a set of weighted criteria. This generate numbers, and

people emotionally and logically buy into numbers better than emotions and

hand waiving.

